

A New Technology, Energized Dispersive Extraction, for the Extraction of Semi-Volatile Organic Compounds from Soil

Environmental Application

Extraction of Semi-Volatile Organic Compounds from Soil

EPA Methods

- Soxhlet US EPA 3540C
- EDGE US EPA 3545A
- GCMS Analysis US EPA 8270

EDGE

- Solvent Hexane : Acetone (50:50)
- Solvent Volume 30 mL (25 mL extraction, 5 mL rinse)
- Temperature Ramp to 100 °C
- Total Time 5 minutes

Soxhlet

- Solvent Hexane : Acetone (50:50)
- Solvent Volume 100 mL
- Total Time 16 20 hours

GCMS Method

- Agilent 7890A GC with a 5986C MSD
- Phenomenex ZB-5MSplus 30 m, 0.25 mm column
- \bullet Inlet 250 °C and 1 μL spitless injection
- 0.8 mL/min flow rate using Helium as the carrier gas
- Temperature Profile

Rate (°C/min)	Temperature (°C)	Hold (min)	Run (min)
	40	0	0
30	260	4	13
6	295	6	26

- Quantitation was based on a 6 point multi-level calibration curve in the concentration interval from 12 ppm to 100 ppm
- Ion Monitoring mode was used to identify each specific compound and from that total area was used for quantifying each peak

Chromatogram of BNA Compounds

Extracted Soil Samples

Ę

% Recovery Data of Spiked 15 g Soil Samples

Ē

Compound	Sand	Loam	Clay
Pyridine	100	88	93
1,4-dichlorobenzene	88	88	96
2-methylphenol	84	95	115
3-methylphenol	90	102	104
hexachlorobutadiene	86	92	97
2,4,6-trichlorophenol	90	105	103
2,4,5-trichlorophenol	89	113	99
2,4-dinitrotoluene	90	102	99
hexachlorobenzene	86	86	81

% Recovery Data of Spiked 30 g Soil Samples

Ē

Compound	Sand	Loam	Clay
Pyridine	78	70	79
1,4-dichlorobenzene	86	95	90
2-methylphenol	83	98	100
3-methylphenol	90	96	91
hexachlorobutadiene	90	91	89
2,4,6-trichlorophenol	93	97	89
2,4,5-trichlorophenol	90	105	82
2,4-dinitrotoluene	80	99	86
hexachlorobenzene	98	85	83

Recovery Data of 15 g CRM 110-100

Ę

Compound	% Soxhlet	
2-nitroanaline	94	
2,4-dinitrotoluene	114	
dibenzofuran	92	
fluorene	105	
Bis-2-ethylhexyl-phthalate	97	

CRM 110-100 purchased from Sigma Aldrich

Environmental Tips

Ē

Post Extraction Tips

Options: Traditional

Automated Soxhlet •90 mL

- •2 hours
- •Bank of 6

Ultrasonic •300 mL •1 hour

Time consuming and lots of solvent usage!

Soxhlet

Sonication/Basic Extraction

Options: Pressurized Fluid Extraction

Dionex ASE

(Accelerated Solvent Extraction)

•40 mL

•30 minutes

•2 samples per hour

FMS

(Fluid Management Systems)

- •80 mL
- •22 minutes
- •2 samples per hour

Large and expensive!

Buchi Speed Extractor

- •60 mL
- •30 minutes
- •12 samples per hour

Pressurized Fluid Extraction

EDGE Extraction

ASE 350

- Thermo Fisher Scientific Dionex ASE 350 or 150
- Patented (Same for EDGE)
- Solid or semi-solid samples (Same for EDGE)
- Common solvents and elevated temperatures and pressures (Same for EDGE)
- Automatically extract 24 samples (2 EDGE for the price of 1 ASE)
- 1, 5, 10, 22, 34, 66, and 100 mL cell sizes (1 Q-Cup can be used for all samples sizes)

EDGE Added Features

- 6 solvent lines
- No need for HPLC like pump
- No N₂ required
- Internal thermocouple

The Difference is Q-Cup Technology

Q-Cup technology

A simple solution to a complicated problem.

The Q-Cup[™] sample holder is easy to assemble, consisting of just three simple pieces.

No packed column required
 No need to run at HPLC like Pressures

Thermo Fisher Scientific's Comparison

Time Savings		
Technique Average Extraction 1		
Southlet	4-48 h	
Automated Soxhlet	1-4 h	
Sonication	0.5–1 h	
SFE	0.5–2 h	
Microwave	0.5–1 h	
Dionex ASE 150/350 0.2-0.3 h		

Solvent Savings		
Technique	Solvent Usage*	
Soxhiet	150-500 mL	
Automated Soxhlet	50-100 mL	
Sonication	150-200 mL	
SFE	5-50 mL	
Microwave	25-50 mL	
Dionex ASE 150/350	5-200 mL	

*average processing times for 18 samples

6 Times Faster

12 Samples/hr

Includes extraction, rinsing, filtering, cooling & washing

No Carryover

Technique	Time (minutes)	Solvent Usage (mL)	Cost ¹
EDGE	5	30	\$
QuEChERS	30	30	\$
Pressurized Fluid Extraction	30	35	\$\$\$
Soxhlet	360	150	\$\$
Automated Soxhlet	120	90	\$\$\$
Ultrasonic	60	300	\$\$

¹Includes instrument cost and running cost

ASE 350

Only extraction time reported in application notes

Steps not included:

- Sample prep
- Washes between samples
- Heating or cooling
- System set up
- Preheat
- Pressure release
- No access to samples until entire run is complete

ASE 350: Sample Cell

- Each cell contains
 - 1 steel shaft
 - 2 Steel end pieces
 - 2 Tiny rubber o-rings* (also requires unique tool)
 - 2 Steel frits (10 micron)
 - 2 Large rubber o-rings*
 - 2 Steel open circular clamps (also requires unique pliers)
 - Enough glass beads to fill the cell void volume

*Needs replacement at least every 50 samples run

Cost per test comparison

Ę

• \$6.40/test

Sonication
• \$.72/test

ASE 350 • \$10.60/test

EDGE
• \$0.75/test

ASE 350: Issues

Beyond the obvious drawbacks when compared to EDGE

- Pressures errors due to improper cell construction
- Clogging problems
- Solvent leaking issues
- Dated system, tedious to program

ASE 350: 52 Application Notes

• Environmental (15 Application Notes)

• Fish, Waste Water, Sludge, Soils, Air Filters, etc.

• Food (13 Application Notes)

- Fats
- Pesticides/Herbicides in Foods
- Active Natural Ingredients
- Acrylamide and Zearalenone Detection

• Chemicals & Allied Plastics (12 Application Notes)

- Plastics/ Textiles
- Alternative Energy
- Consumer Products
- Plant/Herbicides in Animal Tissue (8 Application Notes)
- Pharmaceutical/Nutraceutical (3 Application Notes)

EDGE | A New World of Sample Preparation

